Intragenic suppressors of a mutation in the aspartate chemoreceptor gene that abolishes binding of the receptor to methyltransferase.

نویسندگان

  • Daisuke Shiomi
  • Michio Homma
  • Ikuro Kawagishi
چکیده

In the chemotaxis of Escherichia coli, receptor methylation is the key process of adaptation. The methyltransferase CheR binds to the carboxy-terminal NWETF sequence of major chemoreceptors. The substitution of Ala for Trp of this sequence (W550A) of the aspartate chemoreceptor (Tar) abolishes its CheR-binding ability. In this study, six independent intragenic suppressors of the mutation were isolated. They were divided into two classes. Tar carrying the class I suppressors (G278A-L488M, T334A, G278A, G278C and A398T) showed signal biases toward tumbling, corresponding to increased activities of the receptor-associated histidine kinase CheA. These suppressors further reduced the unstimulated methylation level of Tar-W550A, but allowed slight but significant stimulation of methylation by aspartate. Some other CheA-activating mutations were also found to serve as class I suppressors. These results suggest that the class I suppressors compensate for the signal bias of Tar-W550A caused by its low methylation level and that the NWETF sequence is required primarily to maintain an appropriate level of methylation by increasing the local concentration of CheR around the receptor. The class II suppressor was a mutation in the termination codon (Op554W) resulting in the addition of 11 residues containing an xWxxF motif. This revertant Tar supported chemotaxis and was methylated almost as effectively as wild-type Tar. This effect was reversed by introducing a mutation in the xWxxF motif. These results reinforce the importance of the xWxxF motif and suggest that the motif does not have to be located at the extreme carboxy terminus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Mutation in Exon 4 of the Low Density Lipoprotein (LDL) Receptor Gene in an Iranian Familial Hypercholesterolemia Patient

Familial hypercholesterolemia (FH) is an autosomal co-dominant disorder of lipid metabolism, caused by mutations in LDL receptor gene. The penetrance of FH is almost 100%, meaning that half of the offspring of affected parents born with disease. The patients are at risk of premature coronary heart disease (CHD). There is no report about the molecular basis of FH in Iran. Identification of mutat...

متن کامل

P-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

P-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Identification of a Novel Intragenic Deletion of the PHKD1 Gene in a Patient with Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1gene. In the present study, we describe a severe case of ARPKD carrying a point mutation and a novel four-exon deletion of PKHD1 gene. Materials and Methods The PKHD1, PKD1 and PKD2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 148 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2002